

Jedemo: Demonstrational Authoring Tool for Java Applets

Motoki Miura and Jiro Tanaka

Institute of Information Sciences and Electronics,
University of Tsukuba

Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573 Japan

{miuramo, jiro}@iplab.is.tsukuba.ac.jp

ABSTRACT

We propose applying demonstration-authoring facilities
for applet-based systems. In this paper, we describe a
system, which assists applet developers to prepare
animated help contents for the web users of their applets.
We have developed Jedemo authoring system and the
animator. The applet developers only need to prepare their
target applets. Jedemo authoring system captures
event-objects generated by user actions from the target
applet and displays the event objects as icons. If the
developer adds some rules, the captions of the action are
generated automatically. Jedemo animator as a
demonstration shows the actions and the generated
captions. The web users will watch the demonstration and
understand the use of the target applet without any
trouble.

Jedemo authoring system and the animator are suited for
almost all applets. Developers can plug-in Jedemo
facilities to their applets. This framework is helpful for
both the applet developers and the applet users.

INTRODUCTION

The internet technology, especially World Wide Web
technology, has recently become very popular. All sorts of
information can easily be accessed using Web browsers.
Most Web browsers can execute Java applets. An applet is
a small program, which is transferred from a server via
network and executed on the client machine.

 Recently, software developers utilize Web for making
their products public. Their main purpose is to provide the
trial versions of the system to the users. There are two

advantages in presenting the system as an applet. One is
reducing user's trouble, because an applet can be
downloaded automatically and the user does not have to
actually install the system. The other is reducing the
version-up cost. Developers can provide users the latest
bug-fixed system any time. We could say that
applet-based systems have upgrading property.

 When software developers upgrade their system, they
also need to modify its help documents. It is inefficient to
re-edit the old help documents in case the system has
changed in appearance or interface. The developers need
to describe the new functions from the scratch.

In this paper, we describe an authoring system that allows
developers to prepare typical demonstrations for their
applets. An animated help (Sukaviriya 1988) means
showing a demonstration of the system's behavior. This
demonstration is performed with a pseudo mouse cursor
as if someone is operating.

WHY IS DEMONSTRATIONAL HELP SUITABLE

FOR JAVA APPLETS?

Although textual representation is common for expressing
help messages, we have adopted the demonstrational
method for our authoring system. It is because of two
reasons. First, the demonstration, which shows concrete
examples, is fit for explaining the behavior of graphical
user interfaces. The users can understand the sequence of
operations in an intuitive sense. Second, the
demonstration can be constructed easier than text. The
demonstration changes the target system by sending
event-objects, which emulate user actions. We call the
emulating process as “event-driven method.” The
event-driven method is more flexible than the
movie-playing one. The developers can generate the
demonstrational help based on the event-driven method by

recording event-objects.

MECHANISM FOR EVENT-DRIVEN METHOD

An event-driven demonstration needs an event-control
mechanism. This mechanism must include three
functions: initializing, recording and playing. In order to
realize these functions, we adopt the “embedded applet”
mechanism (Miura and Tanaka 1998). The embedded
applet adds the event-handling functions to the target
applet. It can also embed any type of applet because it
works as a special applet-viewer. Figure 1 shows the
embedded applet mechanism. We call the embedded
applet as “manager.”

The “manager” looks for graphical components: button,
panel, and so on, within the target applet and constructs a
hierarchical tree model of the components. After the tree
model is constructed, the manager adds extra
event-listeners to the components. The event-listeners
catch event-objects generated by user action, and send
them to the manager. Then the manager records the
event-objects with information of their source component.
The information is used to throw back the event-object to
the source component while playing. This happens
because a link to the source component becomes invalid
when we play back the recorded event-objects.

COMMAND AND COMMAND-RULE

An event-object usually represents a low-level action such
as MouseMove. When it comes to edit a demonstration,
we prefer to rearrange high-level actions rather than
low-level ones. We introduce the concept of “command,”
which represents one action, made up of a collection of
event-objects. Each command is identified by a caption
which represents its meaning. The caption can be used not
only for editing but also for showing the command list in
the demonstration to the user.
The manager is required to obtain the meaning of a
“command” from sequences of event-objects. However,
the implementation of the target system varies on how it
handles event-objects. Some systems may consider
MouseMove events while the others may not. The target
applet does not know the existence of the manager, and it
is not supposed to provide the information about its
implementation.

 To provide the implementation knowledge for the
manager, we need to arrange “command-rules” for
generating commands. A command-rule relates an
event-object pattern with a command. We can define the
event-object pattern by simple regular expressions. The
command-rule collates an event-object stream with the
pattern. If matched, a new command corresponding to the

event-object stream is generated. The new command is
automatically labeled by the command-rule. When
playing, the generated command can invoke smart
methods instead of low-level ones with event-objects.

THE PROCESS OF PRODUCING DEMON-

STRATION

Target Applet
As a sample of an applet, we have implemented a graph
editor applet (GraphApplet). GraphApplet adopts a direct
manipulation interface for editing a graph. GraphApplet
can layout the nodes by clicking a button. In GraphApplet,
the node dragging operation is used for creating a new
child node, moving the node, creating a link and deleting a
link or node. When you drag down to the node, a new
linked child node is generated. When you drag up, the
node is moved. Moving the node outside the applet means
deleting it.

Jedemo author
The system, named Jedemo (Java Event-driven
DEMOnstration) author, is a Java application based on an
“embedded applet” framework. Jedemo author helps
developers to prepare a demonstration.

choose a target applet
First, the developer selects a file, which specifies a target
applet. When an HTML file is selected, Jedemo author
parses the file and looks for the applet's class name from
the applet tag.

Jedemo author invokes the target applet from the class
name and collects the components (Figure 2). After that,
some extra event-listeners are added to the components
for collecting event-objects.

record as events (path one)
In order to prepare command-rules for the target applet,
the developer operates the applet, which is loaded by
Jedemo author. Actions performed on the applet generate
event-objects. These event-objects are sent to the Jedemo
author via extra event-listeners. Each collected
event-object is shown as an icon (Figure 3).

After collecting the sample actions, the developer defines
a “separator.” The stream of recorded event-objects is
composed of effective parts and ineffective parts. The
separator picks up the effective sequence of event-objects,
which may become a command. We set the types of
ineffective event-objects as a separator. In this example
case, MouseExited, MouseEntered and MouseMoved
event-types are defined as the separator for GraphApplet.

Then Jedemo author looks at the collected event-objects
(from the beginning, one by one), checking whether the
event-object is an element of the separator set or not.
After applying the separator, the sample event-objects are
separated into some rows. Each row except for the
separator one represents a candidate command.

The developer modifies the candidate commands by
specifying the MouseDragged event-objects so that they
can represent a MouseDragged event sequence of any
length. In order to modify the candidates, the developer
selects an area of the MouseDragged events. After being
modified, the specified event-objects are replaced by
symbol icons, which stand for “a collection of more than
one MouseDragged event.”

After that, Jedemo author collects the unique candidates
and generates new command-rules by pressing the
“generate Command-Rules” button. Each collected
candidate becomes a pattern of the generated
command-rule. A command-rule editor can edit the
separator and generated command-rules. The developer
makes up the command-rules by adding caption rules to
each pattern (Figure 4). The caption rule is used to
generate captions to the event sequences automatically.
The caption rule can insert dynamic texts such as
component names, button labels, and so on. The dynamic
text is generated by the method of the target system's
object. To specify the object, we provide these indicators:
@press, @release, @add, @added, @remove,
@removed and @action. Each indicator corresponds to an
event source object. For example, a description

create node @add.getLabel() as a child of
@press.getLabel()

is replaced with
create node [node number] as a child of [node number].

Every method, which returns a textual value, can be
specified.

record as commands (path two)
After preparing these command-rules, the developer
operates the applet again. The recorded event-objects are
automatically labeled by these command-rules. Therefore
once the command-rules are prepared, the developer does
not have to write a description of each action in the
demonstration. Jedemo author stores the labeled
event-object as “command.” The stored commands
become a demonstration.

make public the target applet with demonstration
Jedemo author outputs an HTML file, which includes
rewritten applet tags for publicizing the target applet. The
following is the rewritten tag, a fragment source of the
HTML file.

Jedemo animator

The user who specifies the new HTML file will see the
demonstrational edition of the target applet which is
loaded by Jedemo animator like in Figure 5. Jedemo
animator also works like an applet-viewer but it can
replay recorded commands. If the user wants to watch the
demonstration, he only presses the “Start DEMON-
STRATION” button. The indices of operation appear in
the control window. The animated demonstration is
performed by moving the pseudo mouse cursor and by
showing some pop-up messages while playing.

DISCUSSION

Though our techniques intend to support all kinds of
applets and applications, there is an undesirable case
caused by target system's implementation. It is a case
when the system includes “drawn components” which are
simply drawn on the base component. Usually an
application consists of many graphical elements: icons,
buttons, menus and so on. These elements can be
recognized and identified by Jedemo, because they inherit
the component class. However, if these elements are
drawn on a base component, it is hard for Jedemo to
observe what is happening in the component.

We believe that the demonstrational help is suitable
especially for applets because they will be updated
frequently. Our help method is valid even if the GUI
elements are moved, since it does not have any
dependence on these locations.

RELATED WORK

We often see applications, which record the user's action
and use them. Macro is popular in editing tools, which
may be operated for repetitive tasks. Metamouse
(Maulsby 1989) and EAGER (Cypher 1991) detect a
repetitive task and generate macros. Chimera (Kurlander
and Feinter 1992) shows the generated macros with visual
representation. For code generation, Peridot (Myres 1987)
makes specification of direct manipulation interface from
example actions. Such programming by demons-
tration/example systems is powerful for reducing the
complicated operations, but it does not focus on
presentations.

Bharat (1995) argues about what is needed for the X
window system to perform a certain script language. In
Macintosh, AppleScript generates a script, which is
executable and editable. TkReplay (Crowley 1996) is a
system which records and replays actions on Tcl/Tk.
Jedemo tools are intended for general Java applets and
applications.

Cartoonist (Sukaviriya and Foley 1990) generates an
animated help from UI specification automatically. We
work on the generation of the help demonstration without
any specifications. If the target system has been developed,
Jedemo manager can obtain events occurred in that
system.

CONCLUSIONS

We have implemented demonstration-authoring tools for
Java applets. Jedemo authoring system enables the
developers to make the general applet's demonstration
with minimum cost. The command-rules can be reused
even if the target system is changed. This technique is of
great benefit for both of the developers and the users of
applets.

REFERENCES

Apple Computer, Inc., “Introduction to the Macintosh
Family – Second Edition.”

Bharat K., Sukaviriya P. and Hudson S., 1995,
“Synthesized Interaction on the X Window System,”
Technical Report 95-07, Graphics and Usability Center,
Georgia Tech, USA.

Crowley C., 1996, “TkReplay: Record and Replay for
Tk,” In USENIX Tcl/Tk Workshop Toronto, pages
131-140.

Cypher A., 1991, “Eager: Programming Repetitive
Tasks by Example,” In Proceedings of CHI, pages 33-39.

Kurlander D. and Feinter S., 1992, “A History-Based
Macro By Example System,” In Proceedings of the ACM
Symposium on User Interface Software and Technology,
pages 99-106.

Maulsby D. L., Witten I. H. and Kittlitz K. A., 1989,
“Metamouse: Specifying Graphical Procedures by
Example,” In Proceedings SIGGRAPH ’89, pages
127-136.

Miura M. and Tanaka J., 1998, “A Framework for
Event-driven Demonstration based on the Java Toolkit,”
In Asia Pacific Computer Human Interaction (APCHI-98),
pages 331-336.

Myers B. A., 1988, “Creating Dynamic Interaction
Techniques by Demonstration,” In Proceedings of the
ACM SIGGRAPH User Interface Software Symposium,
Banff, Canada, pages 190-202.

Sukaviriya P., 1988, “Dynamic Construction of
Animated Help from Application Context,” In
Proceedings of the ACM SIGGRAPH User Interface

Software Symposium, Banff, Canada, pages 190-202.

Sukaviriya P. and Foley J. D., 1990, “Coupling A UI
Framework with Automatic Generation of
Context-Sensitive Animated Help,” In Proceedings of the
ACM Symposium on User Interface Software and
Technology, pages 152-166.

FIGURES

Figure 1: “Embedded applet” mechanism: Jedemo manager

applet works as a special applet-viewer. The manager
applet adds event-handling functions to the target applet.

Figure 2: Jedemo author looks for the target applet and

reconstructs its component structure. The component
structure is shown as a tree view.

Figure 3: The recorded event objects are shown as icons.

Jedemo author collects not only mouse event-objects but
also some high-level event-objects such as
component-added and action-performed ones.

Figure 4: The developer makes up the command-rules by adding

caption rules to each pattern. The caption rule can insert
dynamic texts such as component names, button labels, and
so on. In this figure, the label of operated node is specified
with “@add” and “@press” indicators.

Figure 5: This figure shows the user's view; the Jedemo animator

is playing the demonstration, which is recorded by a
developer. (The user can skip some scenes of the
demonstration.)

	ABSTRACT
	INTRODUCTION
	WHY IS DEMONSTRATIONAL HELP SUITABLE FOR JAVA APPLETS?
	MECHANISM FOR EVENT-DRIVEN METHOD
	COMMAND AND COMMAND-RULE
	THE PROCESS OF PRODUCING DEMON- STRATION
	Target Applet
	Jedemo author
	choose a target applet
	record as events (path one)
	record as commands (path two)
	make public the target applet with demonstration

	Jedemo animator

	DISCUSSION
	RELATED WORK
	CONCLUSIONS
	REFERENCES
	FIGURES�

