
A Framework for Event-driven Demonstration
based on the Java Toolkit

Motoki Miura and Jiro Tanaka
Institute of Information Sciences and Electronics

University of Tsukuba
Tennodai 1-1-1, Tsukuba-shi, Ibaraki 305-8573, Japan

{miuramo, jiro}@softlab.is.tsukuba.ac.jp

Abstract

An event-driven demonstration is to show the behavior
of an application by re-executing the captured events. It is
used to provide help regarding how an application works
because it can show typical behaviors in an effective way.
Such help functions are needed in Java applets, which are
carried out by everyone using a Web browser.

In this paper, we describe a framework in which we can
execute the event-driven demonstrations of Java applets.
We have developed “Jedemo” recorder and player. The
Jedemo recorder captures the occurring events while the
applet is running. To make the demonstration more effi-
cient and understandable, the developer can add index and
messages to the captured events. Then Jedemo player re-
executes the captured events showing also the indexes and
messages that were added to them.

Jedemo recorder and player suit for almost all applets.
They are implemented as applets. The developer can in-
tegrate his applet with Jedemo player without any trouble.
This framework is helpful for both the developer of the ap-
plets and the person who accesses the applets.

Key Words: World Wide Web, internet, animation, pro-
gramming by demonstration

1. Introduction

The internet technology, especially WWW (World Wide
Web) technology is receiving much attention in these days.
We can obtain all sorts of information using a Web browser.
Hotjava is a new Web browser, which is able to run applets.
An applet is a small program written in Java. We can often
see various kinds of applets which have interesting func-
tions.

When we operate an applet which has a specific inter-
face, we cannot understand its usage at first. We need some

instructions for operating the applet. Usually the instruc-
tions are given in “textual” form.

However, when the applet has a graphical user interface
(GUI), it is difficult to explain the GUI operations by “text,”
especially when GUI has the direct manipulation interface.
An example of a graphic editor’s operation by textual infor-
mation is given below.

Move objects to other workplace

1. Select objects by mouse dragging.

2. Select [Cut] option from [Edit] menu or
click [Cut] icon.

3. Set focus to the destination workplace.

4. Select [Paste] option from [Edit] menu or
click [Paste] icon.

When we want to “move” an object, we read the above
directions. We need to find the corresponding GUI compo-
nents; such as [Cut] icon, [Paste] icon, one by one. There is
a gap between the “text” and the operated “object.”

There are many Web pages which have both the applet
and the instructions to operate it. When we want to read
the instruction and operate the applet, we need to scroll the
page up and down frequently. Shneiderman[8] describes
that help by animation is efficient in a limited display.

2. Event versus Video

We suggest to provide help by “demonstration” instead
of using “text.” By demonstration we mean to show the
application as running. Demonstration can be event-driven
or image-driven. In event-driven demonstration, the key-
point is to record the sequence of events when the appli-
cation is first executed by the developer. These events are
re-executed when a user of the application wants to know
how the application works. In image-driven demonstration,

actual images of the application are recorded and re-played
as video.

Image driven demonstration is in-flexible because it can-
not be changed according to the needs of different users.
Unlike this, more information can be added to the recorded
events making the event-driven demonstration quite flexi-
ble. Event-driven demonstration can be performed without
any special arrangement, whereas playing video images al-
ways need special programs. In addition, image-data con-
sumes a large disc space. Therefore we prefer event-driven
approach for demonstration.

3. Design

Using the event-driven method, thetarget system is
combined with themanager. The target system represents
the application to be demonstrated. The manager, which is
composed of a recorder and a player, represents the demon-
stration tool.

3.1. What Jedemo manager should do?

The recorder is used by the application’s developer. The
recorder assists the developer to make demonstrations. The
player helps the user of the application. The steps to use the
demonstration system are summarized in Figure 1.

Target System

Recorder

Typical Operation
(developer)

Target System

PlayerRequest
(user)

(1) Record events. Watch the operation.
Store it as events.

(2) Edit the events.

(4) Play the events.

Recorder Indexing the events.
Adding some messages.

(3) Save it to Files.

Call methods.

events

events

DEMO

index,
messages

demonstration

Make
Demonstration

Play
Demonstration

Figure 1. Outline of the system

The recorder captures the events of developer’s input.
There are two ways for capturing the events. First, the target
system sends the events to the recorder. Each component of

the target system should tell the recorder what events have
occurred in the component. Second, the recorder watches
the target system and catches the events. We adopt the lat-
ter approach, since the developer does not need to modify
the target system. But generally it is hard to catch the events
of the target system.

After capturing the events, the recorder generates indices
for the events. We can edit the indices and add messages
which will be displayed on the demonstration while the
events are re-executed.

The player loads the demonstration which includes the
stored events, the indices and the messages. While playing,
for each event the player calls the method in the target sys-
tem which would have been called if the event had occurred
as a result of a user input. The player also displays a pointer
(pseudo mouse cursor), the indices and the messages. The
indices are shown as a list. For such a demonstration, dis-
playing the pointer is important because the user cannot un-
derstand what is happened without any pointer. The user
can make the player skip the demonstration using the in-
dices.

3.2. What the target system should do?

To replay exactly the same behavior, the target system
should have an initializing method. The recorder invokes
the method before recording events. The player also invokes
the method before playing demonstration.

The target system which has already been developed
should not be modified. The developer makes the target sys-
tem as usual. The only thing the target system needs is an
initializing method. The target system should not concern
whether it is controlled by the manager or not.

4. Event model of target applet

4.1. Components

The developer of an applet uses the class packages such
as Abstract Window Toolkit(AWT) or JFC/Swing. There
are two types of classes: a component and a container.
The component can receive user inputs and perform corre-
sponded actions. The container can add some components
and layout them. The container can also add the other con-
tainer. The container has a list of own components. Us-
ing the list, we can know the components information. The
developer put together components and containers for pro-
gramming an applet/application. These components consti-
tute a tree structure. For example, components of TreeAp-
plet (Figure 2) form a tree structure shown in Figure 3.

Figure 2. TreeApplet

Button :
"CLEAR"

GraphApplet

Panel ScrollPane

Node : " 2 "Node : " 1 "Node : " 0 "

TreeBasePanel

Container

Component

Figure 3. Component tree of the TreeApplet

4.2. Event-listener object

Mouse operation creates mouse-event instances. An
instance of mouse-event class, which is capsulated as
a low-level mouse operation, can be occurred by all
of the components. Each instance of mouse-event
is performed by eitherprocessMouseEvent() or
processMouseMotionEvent() method in the com-
ponent.

The component can add some mouse-listener objects
which is instances of MouseListener class or MouseMo-
tionListener class. The instance of MouseListener han-
dles press, release, click, enter and exit mouse-event. The
instance of MouseMotionListener handles move and drag
mouse-event. Each mouse-listener object has methods
which handle specific mouse-event. The methods of mouse-
listener object are called from the component which gener-
ates the event.

The component can add more than one listeners. There
are many listeners which correspond to each event-object.
For example, an action-listener object performs an action-
event which is created when a button is clicked. A
container-listener object performs a container-event which
is created at the time the container add or remove any com-
ponent.

The recorder uses listener objects for catching all of the
events. The listener objects sends the events to the recorder.
While catching events, the recorder adds the listener objects
to the components.

4.3. Handling the stored events

Most applets are manipulated with a mouse. Usually, a
mouse is used by clicking or dragging for operating each
component object. The clicking is used for pressing a but-
ton or selecting an object. The dragging is used for mov-
ing a scrollbar or specifying an area. These operations
consists of a sequence of low-level events. The low-level
events in both clicking and dragging are started with a
Mouse Pressedevent, followed by someMouse Dragged

events when dragging, and ended with aMouse Released
event. We call the sequence of the mouse events as a stroke.
Each low-level event is too complicated to handle. Jedemo
manager considers a “stroke” as a set of low-level events.
Jedemo recorder creates the strokes which consist of low-
level events separated byMouse Movedevent (see Figure
4). The advantages of such a hierarchical event are de-
scribed in [9].

Each stroke is labeled by the recorder when it is decided.
In editing, we can change the label for explanation. The
player uses the label as an index.

5. For playing

5.1. Search the source component

The player invokes the target applet’s method of a spe-
cific component. So the player should specify the compo-
nent before invoking.

Originally each generated event has asource compo-
nent. For example, an action event which represents a
button-pressed action knows which button was pressed.
Each event has the source component as a “link.” The link
points to an address. While the target applet is running, the
link is valid. But when it comes to play the stored event, the
link becomes invalid. Because the linked source component
will be loaded with another address.

To identify the link with the source component, the
player must track each component from the running target
applet. Two tracking methods are considered: tracking by
location and tracking by path.

Tracking by location (Figure 5) is a method by matching
the event’s coordinate with the object’s location. Tracking
by path (Figure 6) is a method by using an order which is
decided when the component is added to the container.

Tracking by location has a problem in case the tar-
get applet was resized. The resize operation brings re-
layouting. After re-layouting, the location of the compo-
nents are changed. Then the source component tracking by

stroke

...

stroke

Mouse_Press Mouse_Drag

Mouse_Release Mouse_Move

Single Click Double Click

stroke

...

Drag

Event stream

stroke

Figure 4. Mouse event-stream and strokes

Button : "CLEAR"

GraphApplet

Panel ScrollPane

Node : " 2 "Node : " 1 "Node : " 0 "

TreeBasePanel

 +0+0x300x250

 +0+0x300x49 +0+50x300x200

+110+7x70x19 +0+50x280x180

 +105+65x60x22

 +70+180x60x22

 +190+189x60x22

Figure 5. Tracking by location

Button : "CLEAR"

GraphApplet

Panel ScrollPane

Node : " 2 "Node : " 1 "Node : " 0 "

TreeBasePanel

 /(target)

 /1 /2

/1/1 /2/1

 /2/1/1 /2/1/2 /2/1/3

Figure 6. Tracking by path

location does not work well. Even if the target applet was
re-layouted, the order of the component does not change.

Therefore we adopt tracking by path. To realize this
mechanism, each event need to keep a path when it is
recorded. The player can identify the path with the source
component.

In the real applet, new component is often created dy-
namically. For example, node components in TreeApplet
are created frequently while editing. The recorder and the
player use ContainerListener to realize the changes of the
component structure.

5.2. Re-executing

During the playing session, target applet’s state should
be changed. Furthermore, the target applet’s view should
be changed as it is recorded. For example “press CLEAR
button” performs cleaning action and denting the button.

To change both of the state and the view, the player in-
vokesprocessEvent() method with the stored event.
The processEvent() method calls proper method
in compliance with the event. MouseEvent invokes
processMouseEvent() method. KeyEvent invokes
processKeyEvent() method. These methods call all
registered listener object. So the target applet’s state and
view will be changed.

The processEvent() method can process all types
of events. However, theprocessEvent() method is a
private method so that it cannot be called from the other
class by default. When we want to call this method, we

make subclass of the built-in component. To perform it an-
other way, the player call high-level method. For example
JButton class, which is a subclass of AbstractButton, has
doClick() method. This method performs a “click” pro-
grammatically.

When it comes to perform a button-pressed event, the
player calls such a high-level method by name. The
recorder prepares proper method name from the stored
events.

6. Implementing Jedemo manager

6.1. Design form of events

In the previous section, we described that the player
needs to know both a source component and a method name
which corresponds to stored events for invoking. The infor-
mation belongs to a “primitive” class. The Primitive class
which represents a low-level event has the following fields.

path represents a location of base container.

id is a component order for identification.

event stands for stored low-level event.

method keeps a name of the invoking method.

xy is a coordinate of the pointer. We can obtain
the coordinate by mouse-event.

shape means a pointer’s form.

skip is boolean field whether the event can skip
or not.

Figure 7. Component-
Tree tab folder

Figure 8. EventList tab
folder Figure 9. Index Editor

messageis displayed for assistance.

Path, id and classname are used for identifying the source
object. Skip is used when we want to jump to the index.
Message is shown in playing.

Stroke class has an array of primitives and an index. The
index can be written by the developer. The recorder writes
a temporary index when the primitives are decided.

6.2. Jedemo manager

In Java environment, an applet runs under Java
VM(Virtual Machine). Though we can implement the man-
ager as a customized Java VM, it will not become popular
among the users.

We have implemented Jedemo (Java Event-driven
DEMOnstration) manager which is one of the applet viewer
running as an applet. Jedemo manager has functions of
recording, editing and playing the demonstration. Using
this framework, a developer can integrate the target applet
with the manager easily. In addition, a user who needs the
demonstration can see without any difficulty.

Figure 7 shows the ComponentTree tab folder which can
add/remove event-listeners and inspect the target applet’s
component structure. Figure 8 shows the EventList tab
folder which can record events and check its contents and
play it.

In the EventList tab folder, we can also control running
speed and save/load the stored events. The event list has in-
dexes of the strokes. By double-clicking the index, we can
skip the demonstration at that point. To skip the demonstra-
tion at any point, the player initializes the target applet and
processes events which cannot skip, with minimum interval.
We can also edit the index by IndexEditor (Figure 9).

6.3. Target Applet

To make sure the manager works well, we have imple-
mented a graph editor applet. The applet adopts direct ma-
nipulation interface for editing a graph. The applet can lay-
out the nodes by clicking button. In the applet, node drag-
ging operation is used for creating new child node, moving
the node, create a link, delete a link and delete the node.
When we drag down to the node, new child node is made
with link. When we drag up, the node is moved. Moving
the node outside of the applet means deleting. ButtonPress
in parent node and ButtonRelease in child node brings cre-
ation of new link. To delete the link, press on the child node
and release on the parent node.

6.4. Example

The developer specifies the target applet (class file is
GraphApplet.class) by applet’s parameters in HTML doc-
ument as follows.

<applet code="JedemoRecorder.class">
<param name="target" value="GraphApplet">

</applet>

Jedemo manager loads the target applet by name and
shows it. The developer pushes “addListeners” button. The
recorder inspects the target applet’s component tree and
shows it. The developer operates the target applet. Then
the operation is recorded. After the operation, the devel-
oper can confirm and edit the demonstration. When the
editing is finished, saves the stored events to a file named
“example1.jdm .” To publicize the target applet with the
demonstration, write an applet tag as follows.

<applet code="JedemoPlayer.class">
<param name="target" value="GraphApplet">
<param name="demofile" value="example1.jdm">

</applet>

Then the user sees the target applet as Figure 10. If the
user needs the demonstration, press “start DEMONSTRA-
TION” button. Of course the user can also operate the ap-
plet normally.

Figure 10. The publicized applet

7. Related work

We often see the applications which record the user’s ac-
tion and use it. Macro is popular in editing tools which may
be operated repetitive tasks. Metamouse[3] and EAGER[2]
detect a repetitive task and generate macros. Chimera[5]
shows the generated macros with visual representation. For
code generation, Peridot[6] makes specification of direct
manipulation interface from example actions. Such pro-
gramming by demonstration/example systems are power-
ful for reducing the complicated operations, but they do
not center the instruction use. Jedemo manager shows the
demonstration as if someone operated.

Bharat[4] argues what is needed for the X window sys-
tem to perform a certain script language. In Macintosh,
AppleScript[1] generates a script which is executable and
editable. Jedemo manager is intended for general Java ap-
plets and applications.

Cartoonist[7] generate an animated help from UI speci-
fication automatically. We work towards the generation of
the help demonstration without any specifications. If the
target system has been developed, Jedemo manager can ob-
tain occurred events.

8. Conclusions

We have implemented Jedemo recorder and player.
Jedemo recorder enables us to make the general applet’s
demonstration and store it as events. Jedemo player loads
the events and executes target applet with a pointer. Both
Jedemo recorder and player run as applet, which work like
applet viewer. The developer can show the effective demon-
stration that he wants to emphasis. The user can understand
about the applet. This technique would benefit a lot of peo-
ple.

9. Future work

Jedemo manager is helpful for both the developer and the
user. The editing function is important for the developers.
We have to provide more useful environment for editing.

References

[1] Apple Computer,Inc. Introduction to the macintosh family —
second edition.

[2] A. Cypher. Eager : Programming repetitive tasks by example.
In CHI ’91 Conference Proceedings, pages 33–39, May 1991.

[3] I. H. David L. Maulsby and K. A. Kittlitz. Metamouse: Spec-
ifying graphical procedures by example. InProceedings SIG-
GRAPH ’89, pages 127–136, 1989.

[4] P. Krishna Bharat and S. Hudson. Synthesized interaction on
the x window system. InTechnical report 95-07. Graphics
and Usability Center, Georgia Tech, USA, 1995.

[5] D. Kurlander and S. Feinter. A history-based macro by exam-
ple system. InProceedings UIST ’92, pages 99–106, 1992.

[6] B. A. Myers. Creating dynamic interaction techniques by
demonstration. InProceedings CHI + GI ’87, pages 271–
278, 1987.

[7] Piyawadee”Noi”Sukaviriya and J. D. Foley. Coupling a ui
framework with automatic generation of context-sensitive an-
imated help. InProceedings UIST ’90, pages 152–166, 1990.

[8] B. Shneiderman.Designing the User Interface 2nd edition.
Addison-Wesley, 1992.

[9] D. S.Kosbie and B. A. Myers. Extending programming
by demonstration with hierarchical event histories. InPro-
ceeding of East-West International Conference on Human-
Computer Interaction EWCHI ’94, 1994.

