A graph layout and a multi-focus perspective display in the
flowgraph editor for the legal articles

Koji Miyagi

Motoki Miura

Jiro Tanaka

Institute of Information Sciences and Electronics
University of Tsukuba
Tennoudai 1-1-1, Tsukuba-shi, Ibaraki 305, Japan.
+81 298 53 5165
{miyagi,miuramo, jiro}@softlab.is.tsukuba.ac.jp

ABSTRACT

The legal articles are difficult to understand for a non-
specialist. We think that understanding becomes easier
if the legal articles are expressed in the form of the flow-
graph. Since legal articles contain lots of information,
the flowgraph size becomes large when this information
is expressed in the form of the flowgraph. The display
size and the resolution of the computers are limited. It
is hard to handle such information in the computer dis-
play. Therefore, we need techniques which express the
flowgraph in a compact manner.

In this paper, we propose a graph layout technique
and a multi-focus perspective display method for
the flowgraph editor.

INTRODUCTION

Generally speaking, a legal article has the structure of
“legal necessary conditions — legal effect”[6]. It means
that the law is effective if its necessary conditions are
satisfied. This structure can be expressed easily by the
flowgraph, where “legal necessary conditions” node and
“legal effect” node are connected by “yes edge”. The flow
of the conditions, i.e. time progress, is very important.
The flowgraph can be understood easily as it shows the
course of the conditions with the arrow.

Editing becomes a hard work if a user edits a flow-
graph by manual operations. Therefore, a computer
must provide us some assistance. In this paper, we pro-
pose a graph layout technique and a multi-focus per-
spective display method for the flowgraph editor for such
purpose.

Here we consider a flowgraph editor which handles the
United Nations Convention for the International Sale of
Goods (CISG)[3]. CISG has been adopted by about 50
nations included the USA, Germany, UK, Russia, China,

Australia, etc. It is becoming a worldwide legal standard
for international commercial transactions. The text of
the CISG has been written in many languages, and its
provisions are being applied in many different judicial
systems|[4].

Graph layout is a technique to rearrange a graph
automatically and display the result. The technique
helps a user to understand the complex graph. We need
to rearrange it, following to the characteristics of the
drawing-object, to the form which is easier to under-
stand. Though it varies in the drawing-object, generally
it must be rearranged so that nodes and edges will not
overlap and all nodes are adjusted in a right manner.

The various drawing-objects, which are diagrams,
texts, and so on, must be mapped by a mapping method
and displayed on the display. It assists a user to under-
stand the logical meaning of the flowgraph promptly by
adopting a suitable display method.

ALGORITHM FOR THE FLOWGRAPH LAYOUT

The concept of a flowgraph is very general. The his-
tory of a flowgraph goes back to the paper[7] in 1947.
There are many commercially available flowgraph edi-
tors. However, most of flowgraph editors like RFflow([§]
has no automatic layout facilities.

We would like to equip the automatic layout algorithm
to our flowgraph editor. In editing the flowgraph, we
want to check the consistency of the flowgraph, in a cer-
tain extent.

The example of the flowgraph

An example of the flowgraph is shown in Figure 1. This
flowgraph shows the validity of the contract. This ex-
ample includes three round-shaped terminal nodes and
seven rectangular-shaped nodes. The largest node which

? / node

"No edge”

A contract becomes valid.

A contract becomes
concluded.

:> Abbreviated node

not (The contract
is invalid.)

/

The contract has the date of |._| The contract has condition
beginning of validity, | of validity,

The condition is satisfied. |—

"Yes edge"

The date of begining

has come.

¥ »

ﬁ‘ ' edge "
__not concluded >

Figure 1: An example of flowgraph editor

is labeled “a contract becomes valid” has two abbre-
viated nodes and four nodes. The abbreviated nodes
are shown by double-lined rectangles. Each abbreviated
node includes some child nodes which are not displayed
in this figure.

Several legal professors like to use such flowgraphs to
show the legal articles. One of the typical characteristics
common to all the flowgraphs is that the flow of the
condition is regarded as an important factor. Especially,
the nodes which connected with “yes edge” are arranged
as a vertically straight mannar. The position of nodes
which are connected with “no edge” depends on how
the ones draw. There are two ways for drawing “no
edge” which is preferred by legal professors. We call
the way which draws “no edge” with a straight line as
“Kagayama method,” and the way which draws one with
a turning line as “Yoshino method.” Kagayama method
locates the nodes which are connected to “no edge” to
the right. Yoshino method locates the node to the right
down. Yoshino method requires the larger area than
Kagayama method to draw the same flowgraph. We have
implemented both methods to make the flowgraph more
flexible.

The layout of the flowgraph
The target lowgraph has the following features.

e The structure of the flowgraph is hierarchical. Some
parent nodes have their child nodes inside of them.

e The size of a node is determined by the textural
information which should be displayed and by the
sizes of their child nodes.

e One node at most has two edges (“yes edge” and
“no edge”). The “yes edge” stems from the bottom

5| @
0

(1) Deciding the start-node (2) Mapping the node

to the grid
th
11
\ \
. | L] -
| w W
| []

IaE
w h

A

(3) Deciding the grid-space (4) Deciding the size of

parent node

Figure 2: How to decide the size of nodes

of the node, and the “no edge” from the right hand
side of the node.

e The lines of the edges consist from horizontal and
vertical lines only.

In the target flowgraph, the nodes can be nested to
the arbitrary level. The child node connection is closed
in the parent node. Therefore we can consider a process
of node positioning as a localized problem.

The local positioning process is recursively carried out
as follows (see Figure2): (1) deciding the start-node, (2)
mapping the node to the grid, (3) deciding the grid-
space, and (4) deciding the size of parent-node. To de-
cide the start node, we look for an edge from parent to
child. If the edge does not exist, we regard the node
which does not have the incoming edge as a start node.
If many start nodes are found, the mapping process is
performed one by one. The mapping process will be de-
scribed in the next section. After the mapping, each
node belongs to a certain grid. We can assume that
the size of the nodes has already been defined, since lo-
cal positioning processes are performed in a bottom-up
manner. To prohibit each node from overlapping, each
grid-space is adjusted to the size of the largest node on
the grid. The overall size of the parent node can be
calculated by adding up the all grid-spaces.

After the local position of all node is determined, the
global position of each node can be calculated. The
global position of the child node is the sum of parent’s

Yo 1
t {2 {s}
2 uﬂ
\ 4
3 3 |

an original graph Mapping the nodes to the grid

Figure 3: Mapping the node to the grid

global position and the child’s local position. The pro-
cess is executed from the top level of the node.

When all node positions are determined, the edges can
be drawn. The “yes edge” is wired from the center of the
bottom-line to the center of the top-line of the destina-
tion node. The “no edge” is wired from the center of the
sideline to the center of the top-line (Yoshino method)
or the left-line (Kagayama method).

The node mapping process

In this section, we describe the node mapping process.
We define an orthogonal grid in each parent-node, and
the child-nodes are assigned to the grid (Figure 3). The
node assignment algorithm which is expressed in Java-
like notation is shown in Figured4.

Figure4 defines class Edge, class Node, and class
Layout. Procedure mapping() is defined in class Layout.
In the previous section, we have decided the start-node.
The procedure mapping() is called

mapping(start node, 0, 0);

initially. So the start-node is assigned the grid(0,0). Af-
ter that, we search the neighbor node which is connected
by “yes edge” and assume the node as a start-node. This
operation is continued while the node has the “yes edge.”
If the node does not have “yes edge,” the nodes which are
linked the “no edge” will be mapped. The grid position
of node which is linked by “no edge” is depend on the
way to draw the edge (see Figure5). We search first the
“yes edge” rather than the “no edge” in each node, be-
cause the “yes edge” should be drawn as vertical straight
mannar.

DISPLAY METHOD

The screen size and the resolution are the problems when
a diagram is displayed on a computer. At present, be-
cause there is a limit on the screen size and the resolution

class Edge {
int type; // YES or NO
Node d_node; // destination node
int turning; // Yoshino = 1 , Kagayama = 0

}

class Node {
Edge yes_edge, no_edge; // link information
Node parent_node;
Node[] child_nodes;
Size node_size;
int grid_x, grid_y; // grid-point of this node
}

class Layout {
static int indent; // static variable
void deciding_start_node(Node node){ ... }

void mapping(Node node, int gx, int gy){
Edge yes = node.yes_edge;
Edge no = node.no_edge;

node.grid_x = gx; // assignment
node.grid_y = gy;
if (indent < gx) indent = gx; // max of gx

if (yes !'= null)
mapping (yes.d_node, gx, gy+1);
if (no !'= null)
if (gx <= indent)
mapping (no.d_node, indent+l, gy+no.turning);
else
mapping (no.d_node, gx+1, gy+no.turning);

Figure 4: The node assignment algorithm

of a computer, a large figure cannot be looked over on
one screen.

Requirements for the display method

Five requirements have been proposed for the display
method in [2], which are: detaility, totality, simultaneity,
singleness and the fitness of the mapping. A flowgraph
editor should satisfy these five requirements.

Generally, a display method is characterized by the
nature of the mapping from the original figure to the
display. There are various display methods, such as de-
tailed method, multi-window method, screen switching
method and multi-focus perspective display method[2].
However these display methods do not satisfy the above
five requirements, except for multi-focus perspective dis-
play method.

The multi-focus perspective display keeps the
size of the whole figure unchangeable and still expands
the focused nodes. The multi-focus perspective display
method is further classified into fisheye display method,
orthogonal fisheye display method and biform display

node5
(2,0)

L]

el e e e e e]

Fi

(a) Kagayama method

nodel node2 node3 node4
(0,0) (0,1) (0,2) (1,1)
EERENNEE R EN NN
‘ v v v v

2] [2] [2]> [

]]]
* A 4 A 4 A 4
o] s s

nodel node2 node3 node4
(0,0) (0,1) (0,2) (1,2)
EERERRERNEN
v Y v v v

ERNERRENS

]
* A 4 A 4

I‘A
I
H

Remapping

(b) Yoshino method

Figure 5: Yoshino method and Kagayama method

method. The degree of requirement satisfaction is high
in multi-focus perspective display methods.

Fisheye display method and orthogonal fisheye display
method have a tendency that the original form is not
kept. The tendency becomes strong as the size of the
object becomes large. A distant part from the viewpoint
in the infinity is reduced by mapping the area from infi-
nite to finite. In reality, the end of the screen is reduced
too much and cannot be recognized.

Biform display method was invented to get over the
faults of other multi-focus perspective display methods.
“Biform display method” magnifies the viewpoint’s ar-
eas uniformly and reduces other area uniformly. Bi-
form display method keeps the contour-shape and the
circumference-part is never reduced to the infinity. This
display method maps the rectangle-area to the rectangle-
area.

We pay attention to biform display method. But, even
if a flowgraph is displayed by the method, the size of the
flowgraph which a computer can display, while satisfy-
ing the five requirements, is limited. Under the present
condition, the size is not enough to handle the lowgraph
for an expert. Therfore we think that abbreviation dis-
play facility is necessary. By using this facility, we can
abbreviate the arbitrary part of the figure to use the
limited screen size effectively. Therefore we have im-

plemented abbreviation-type biform display method by
adding the abbreviation display facility to the biform
display method.

Biform display method

Figure 6 shows the biform display method. A user can
choose multiple nodes which he wants to be magnified
as viewpoints and designate the magnifying power of the
viewpoint-nodes. In the result, the figure is mapped
transformed as is shown in Figure 6. Biform display
method is performed as follows:

Step (1) : Dividing the areas

An original figure consists of nodes and edges. We pay
attentions only to the nodes. We designate viewpoint
rectangles first. The upper-left and the bottom-right
coordinates of the viewpoint rectangles are looked for.
The values of al, a2, a3, ..., b0, bl, b2, ..., cl, c2, c3, ...,
d0, d1, d2, ... are calculated in this step.

Step (2) : Unifying the areas

When areas overlap, they must be unified and handled
as one area as (4) of Figure 6. The algorithm of the area

a3

b0 at b1 a2 b2 a3 b0 at b1 a2 b2
do do
ci ci
2| w
4 L3 a1
] | Ve]

c3 c2

(1) Dividing the areas (2) Unifying the areas

b0 at b a2 b2 a3

do ‘

"’ o —

THe|] |==

c2

(3) Magnificating / reducing the node (4) Wiring the edge

Figure 6: Biform display method

concatenation is shown in Formulae (1) and (2).

if by <aipq (=1, ,m)

bj
aj+1
m

1

d;
Cl41
m

k

Step (3) : Magnifying / reducing the node

iy- o, m —1)
- m 1)

(€]

I
38
|

) "am_l)
yor,m—1)

(2)

[l
3
|

The reduction rate of the reduction area must be cal-
culated. A reduction rate is calculated by Formulae (3)
and (4). 2 and u are the reduction rates of the x-axis
and the y-axis direction of the reduction area. o shows
the magnifying power of the viewpoint-area.

_ Aamy1 —bo) — oBL (by — ax)

A
2;":?(% —br_1)

(3

y= (cng1 —do) —oXpy(d — 1)

4)
Eln=+11 (cl - dl—l)

New coordinates are calculated for the points at the
upper-left and the bottom-right of the nodes. Coordi-
nates are calculated by Formulae (??) and (6).

by + A(:E — bi) + U'E;;:l(bk — ak) +)\Zizl(ak — bk—l)
lf b; <m<ai+1 (i:O,l,»»»,m)
bo + o(z — a;) + oSiTY (br — ak) + ABi_y (ag — by_1)
ifa; <z <b;(i=1,2,---,m)
(5)

fle) =

Tiot(fonation of the contract)

The omission display

e contract
The detailed display

Figure 7: Abbreviation display and Detailed display

do + p(y — dj) + o_ (di — 1) + p¥i_, (e —
ifdj<y<cj+1(_j:0:17"'7n) .

do + oy — ¢;) + oBIZy (di — e0) + uBi_, (e — dy_1)
lf Cj <y<dj (j:1)27"'7n)

di_1)
9(y) =

(6)

Step (4) : Wiring the edge

An edge is wired to connect the newly arranged nodes.

Abbreviation-type biform display method

We propose “abbreviation-type biform display method”
to add abbreviation display facility. When the size of
the figure becomes large, it is necessary to abbreviate
the unnecessary part. As for abbreviation display, a user
can specify the arbitrary node for the abbreviation. This
method deletes the child node of the abbreviation node.
The edges which connect the child nodes are also deleted.
The abbreviation-node are changed to the abbreviated
icon. It was invented while referring to fisheye of the
abbreviation type[5].

THE SNAPSHOTS OF THE EXECUTION

Figure 8 is the screen outlook of the flowgraph editor.
This editor is composed of Menu-bar, Node-box, Edge-
box and Canvas. The flowgraph of the legal articles
can be made by using this flowgraph editor. The nodes
are expressed by rectangles and show the legal necessary
condition or the legal effect. The edges show relations
between the legal necessary condition and the legal effect
or the relations among the legal necessary conditions.

Forming the node

A node is formed by choosing an appropriate figure from
the node-box and clicking the left button of the mouse
putting the mouse cursor in the canvas(Figure 9). Then

= Flowgraph Editor (1]

FILE | EDIT | LAYQUT | VIEW | OPTION | HELP I‘ Menubar
Y
allof |l =k =l
Nodebox Edgebox AY
Canvas

=]

Figure 8: The screen outlook of the flowgraph editor

/ state that select the Nodebox.

| Flowgrapl = Flowgrap
FI_IZE | EDIT | LAYOUT | VIEW | Q. FILE | EDIT | LAYOUT | VIEW | <

[T of | _lE=l] (I8 ol _1_IE =

= Input Text |
Input Text
Create Node
Create Node
QK Cansel

The input of the text Generated node

Figure 9: Forming the node

a dialog box appears. A user fills in the legal necessary
condition element, the legal effect with a keyboard and
clicks OK button.

Wiring the edge

An edge can be wired by dragging with the right button
of the mouse from the start-node to the end-node of the
edge. The kind of the edge can be chosen from the edge
box.

Layout

A layout is carried out automatically when a user choose
“layout” from the menu-bar or the following cases.
eWhen nodes are overlapped.
eWhen abbreviation or detailed display is specified.

fwoidance of the contract

The contact
loses effect
at time T,

The cantract

is dissolved The effect period

of the contract
expires at tine T.

not(The contract
loses effect
at tine T.)

at time T
[Article 29]

The relsase of
The contract the cantract
loses effect [
at tine T

The release
condition

accomp| ishes
it at tine T

effect.
[Article 49]

Before layout

fwoidance of the contract

The contact

The relsase of
the cantract

effec
[Article 48]

The contract
is dissolved

at tine T
[Article 29]

The effect period
of the contract
expires at tine T

The release
condition

accomp| i shes
it at tine T,

The contract
loses effec
at tine

not(The
loses e
at tine

contract
Fect

After layout by Yoshino method

fwoidance of the contract

The release of | | The contract

The el ease
the contract is dissolved ot (relcontiec

condition
loses effect
accomp ishes
> at tine T.)

The contact
loses effect
at time T

Tre effect period
of the contract

ec at tine
ferticie 49] Totion ey | Lerires at tine T

The contract
loses effect
at time T

After layout by Kagayama method

Figure 10: The layout of the flowgraph editor

eWhen child-node is taken out from the parent-
node.

This system has methods for the layout of the flow-
graph. Their methods of the layout are “Yoshino
method” and “Kagayama method”. Figure 10 shows a
state of the layout by their methods.

Abbreviated display, detailed display

A node-menu is displayed by double-clicking on the node.
Abbreviation or details is carried out by choosing “Ab-
breviation” or “Detail” from the node-menu.

Biform display

A user chooses “Biform Display” from the node-menu,
and follows the instructions of the dialog-box, and des-
ignates a viewpoint. Next, the user manipulates a scale,
and designates a magnifying power. Biform display is
performed according to the change in the magnifying
power in real time. When the “OK” button is pressed
the text is written in the figure. Figure 11 shows a state
of biform display.

= Flowgraph Editor_kagade.les el
res | Eprr | ravowr | view | [-] Bifome Display (2) |

0O | O | | § = | Desigrate a negnification, and push OK.

l' _?:_ZI 2,0 - F

= Flowgraph Editor_kagade.les 1=
e | Epir | paveur | view | orl=l Bifome Display (2) |
O | O | | r . | 1| Tesigrate a nagnification, and push OK.
s
14 —m
— o —

QK Cansel

=) Flowgraph Editor_kagade.les 0 =)
FILE | EDIT | LAYOUT | VIEW | OFTION | HELP I
Y
ol of _|_lg =l =l
T x|

Cansent
(528)

Wil ceal ization
(s26-2)

The consent which a change
was added to(528)

There is 1o
substantial change

[srnrication nereon doas]

Figure 11: Biform display method

IMPLEMENTATION OF THE FLOWGRAPH EDI-
TOR
We used Tcl/Tk[1] to implement the flowgraph editor.

In implementing the editor, we have designed the inter-
mediate code for the flowgraph editor.

The intermediate code format

The format of the intermediate code for “node” and
“edge” is as follows.

< Node > 1D, text, comment, color, figure, absolute co-
ordinates, size, relative coordinates, grids, parent-node-
ID, child-node-IDs, edge-IDs, abbreviation/detailed

node0
nodel
.Jedge36

| An acceptance of an offer |n0d52

==

Figure 12: The graph of the intermediate code

Node:

0 {} {} honeydew s1 {7 7} {706 586 0} {7 7} {} {} {129 15 20 21}
{} no

1 Offer {} black s1 {200 27} {52 26 26} {193 20} {1 1} 0 {} 36 no

2 {An acceptance of an offer} {} black s1 {130 83} {192 26 26} {123
76} {12} 0 {36 37} no

9 Consent {} black s1 {27 139} {398 322 26} {20 132} {1 3} 0 {10 11
12 13} {37 38 12 13 24 41 42} abb

10 {Will realization} {} black s1 {48 195} {129 26 26} {21 30} {1 1}
9 {} {12 13 14} no

11 {The consent which a change was added to} {} black s1 {197 251}
{199 40 40} {170 86} {2 2} 9 {} {14 15} no

12 {There is no substantial change} {} black s1 {225 321} {143 40 40}
{198 156} {2 3} 9 {} {15 16 41} no

13 {An application person does not state meaning at once} {} black
s1 {197 391} {199 40 40} {170 226} {2 4} 9 {} {16 24 42} no

15 {An acceptance reaches} {} black s1 {144 491} {164 26 26} {137
484} {14} 0 {} {38 39 40} no

20 { Formation of the contract } {} black c9 {120 547} {213 26 26}
{113 540} {1 5} 0 {} 39 no

21 { Not(formation of the contract) } {} black c9 {445 547} {248 26
26} {438 540} {2 5} 0 {} 40 no

Edge:

12 {} {} blue e4 9 10 y {226 165 226 180 112 180 112 195} -15
13 {} {} blue e4 10 9 y {112 221 112 446 226 446 226 461} 15
14 {} {} red e4 10 11 n {177 208 296 208 296 251} {}

15 {} {} blue e4 11 12 y {296 291 296 306 296 306 296 321} {}
16 {} {} blue e4 12 13 y {296 361 296 376 296 376 296 391} {}
24 {} {} blue e4 13 9 y {296 431 296 446 226 446 226 461} 15
36 {} {} bluee4 1 2y {226 53 226 68 226 68 226 83} {}

37 {} {} blue e4 2 9 y {226 109 226 124 226 124 226 139} {}
38 {} {} blue e4 9 15 y {226 461 226 476 226 476 226 491} {}
39 {} {} blue e4 15 20 y {226 517 226 532 226 532 226 547} {}
40 {} {} red e4 15 21 n {308 504 569 504 569 547} {}

41 {} {} red e4 12 9 n {368 341 410 341 410 300 425 300} 15
42 {} {} red e4 13 9 n {396 411 410 411 410 300 425 300} 15

Figure 13: Intermediate code

< Edge > 1D, text, comment, color, figure, start-node-
ID, end-node-ID, yes or no, list of the coordinates, con-
straint

In implementing this flowgraph editor, we had to re-
alize the graph drawing of the class structure, the au-
tomatic graph layout and the abbreviation-type biform
display method. We have designed the intermediate
code which realizes these facilities. To draw the class
structure, we must handle the parent and child rela-
tions. Therefore we have made the editor that can record
“parent-node-ID” and “child-node-ID”. In the layout al-
gorithm of the editor, it must handle the absolute loca-

tion and the relative location. The information of the
grid location is also necessary. To handle these informa-
tion, the editor records “absolute coordinates”, “relative
coordinates” and “grids”. In abbreviation-type display
method, we must handle the information whether a node
is abbreviated or not. We have also added the element
“abbreviation / detailed”. When a node is abbreviated,
“abb” is contained in the element, and when not abbre-

viated, "no” is shown.

Example of the intermediate code

The intermediate code for Figure 12 is shown in Figure
13. The node 0 expresses the screen of the editor. We
can see “abb” at the tail of the node 9. It denotes node
9 is abbreviated. The nodes (10 ~ 13) and the edges (12
~ 24,41,42) are not displayed because the parent node 9
has been abbreviated.

CONCLUSIONS

We have implemented the flowgraph editor for the le-
gal articles. The editor has the graph layout and the
abbreviation-type biform display facilities. Considering
the characteristics of the flowgraph, we have designed
the new graph layout. The user can easily rearrange the
figure, and understand the flowgraph. The abbreviation-
type biform display has effectively been implemented. It
satisfies the five requirements for the display method and
has the abbreviation display facility. A user can under-
stand the meaning of the flowgraph better than before.
We are asking legal professors, such as Professor Yoshino
and Professor Kagayama, for the user test. We would
like to improve the editor reflecting their results.

REFERENCES

1.

Jhon K. Ousterhout: Tcl and the Tk Toolkit,
Addison-Wesley Publishing Company, 1994.

. Kazuo Misue, Kozo Sugiyama : On Multi-focus Per-

spective Display Method of Figures for Computer
Aided Diagrammatical Thinking, International Insti-
tute for Advanced Study of Social Information Sci-
ence, Fujitsu Laboratories, ITAS-RR-91-4J(1991.01).

. Kazuaki Sono, Masashi Yamate: The United Nations

Convention on Contracts for the International Sale
of Goods (Kokusaibaibaihou), Seirinshoin, 1993 (in
Japanese).

. Kervin D. Ashley and Hajime Yoshino ed.: The

Fourth International Workshop on a Legal Expert
System for the CISG, Legal Expert System Associa-
tion, 1997.

. Kozo Sugiyama: Automatic graph drawing methods

and their applications, The Society of Instrument
and Control Engineers, 1993 (in Japanese).

. Hajime Yoshino: Expression method of legal knowl-

edge, Report of research and development on legal
expert system, pp. 124-138, 1994 (in Japanese).

H. H. Goldstein and von Neumann: Planning and
coding problems for an electronic computing instru-
ment, part II, in von Neumann Collected Works,

Vol.5, McMillan, New York, pp. 80-151.

. “RFflow Professional Version 3.0J” Simphony,1994.

