
Effect of Auto-complete Function on Processing
Web IDE for Novice Programmers

Motoki Miura

Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology
1-1 Sensui, Tobata, Kitakyushu, Fukuoka, 804-8550 JAPAN

Email: miuramo@mns.kyutech.ac.jp

Abstract—Web IDE is suitable for novice learners because
it can reduce the troublesome of constructing programming
environment. Since most of the Web IDEs utilize text-based
programming, a certain level of typing skills is required for learn-
ers. For that reason, the performance of learning programming
may be affected by the typing skill of the learner. In order to
mitigate the influence of the typing skill, we introduced automatic
code completion to the Web IDE for Processing language. We
investigated how the automatic completion function was used
for novices through an actual course. Since the snippet of “if”
and “for” statements already contained parenthesis and curly
brackets, the auto-complete function significantly reduce the
typing of these special characters. From a questionnaire survey, a
strong positive correlation was found between the use frequency
of the function and the necessity that learner feels.

Index Terms—programming editor interface, typing skills,
Processing, beginners, creativity support

I. INTRODUCTION

Web IDE (Integrated Development Environment), which can
be used only with the browser, is suitable for novice learners
to learn programming because it can reduce the troublesome of
constructing programming environment. Therefore, many pro-
gramming environments using Web IDE have been developed
[1], [2]. We also focused on Processing1, which can utilize
interaction, graphics and animation with a concise grammar
similar to C language. We have been conducted lectures of
creative programming and thinking for undergraduate students
using Processing.js2 with a Web IDE.

Most of the Web IDEs and conventional programming
lectures utilize text-based programming. Therefore, a certain
level of typing skills is required for learning programming
with the Web IDE. For that reason, the level of typing skill of
the learner may affect the learning outcome of programming.
Table I is the Pearson’s correlation coefficient of typing skill
and final performance in our past 4 years course. The level
of typing skill (from 1 to 7) was self-declared by the student
at the beginning of the lecture. The students utilized yatt[3],
which is a locally developed competitive typing trainer in our
institute, for measuring typing skills. The distribution of the
level (from 1 to 7) is shown in Table IV at the appendix
A. From the Table I, we found significance in some classes
of 2016, 2015, and 2014(1). For those classes, the typing

1https://processing.org/
2http://processingjs.org/

skill correlates well with the final grades (scores) of the
programming lecture. However, we consider that the situations
in which the level and superiority of typing skill influences the
outcome of programming learning is not desirable.

TABLE I
CORRELATIONS BETWEEN TYPING SKILLS AND PERFORMANCE. (* AND

** REPRESENTS SIGNIFICANCE OF 5% AND 1%, RESPECTIVELY)

Year(Class) Num of Student r t-value p-value
2017 45 0.024 t(43) = 0.158 0.875
2016 69 0.389** t(67) = 3.457 0.001
2015 72 0.395** t(70) = 3.599 0.001

2014 (1) 75 0.252* t(73) = 2.223 0.029
2014 (2) 49 0.136 t(47) = 0.943 0.351
2014 (3) 52 0.214 t(50) = 1.552 0.127

One of the methods to mitigate the influence of typing skills
is introducing block-based interface such as Scratch [4] or
Google Blockly [5], [6]. By using the block-based interface,
the learner can avoid mistakes and errors in the text-based
method. In addition, learners can recognize available function
blocks in a short time by viewing the block list. However,
although the block-based interface can reduce errors, the de-
gree of freedom of programming description is lower than that
of text-based method. Also, introducing block-based interface
takes considerable time to master the operation especially for
solving problems.

Therefore, in order to reduce the influence of input error and
typing error in the programming environment of text-based
programming method, we applied input support by automatic
code completion function to Web IDE. Also, through actual
lectures, we investigated how the automatic completion func-
tion was used for novices.

II. AUTOMATIC COMPLETION FUNCTION AND ITS
IMPLEMENTATION

The automatic completion (auto-complete) is a function of
displaying a list of completion candidates while inputting.
Users can reduce the amount of typing and avoid mistypes
by selecting candidates. It is a standard feature in integrated
development environments such as Eclipse and Visual Studio
as well as classic editors such as vi and Emacs. Users can
input the first few letters of function names and variable
names, select from the candidates, or automatically insert

corresponding parentheses. Therefore, in addition to mitigating
typing errors and improving editing efficiency, the automatic
completion has the effect of lowering the barriers of relatively
long names for function names and variable names.

As the implementation of our Web IDE, we utilized the
Tab key for calling the auto-complete function. It is the
same as the complement operation of Bash, which is the
default log-in shell on many Linux. There is also a method
of automatically displaying candidates while inputting normal
characters. However, there was concern that candidates would
be displayed even if the learner did not intend, or some part of
the code would be hidden for candidate display unexpectedly.
For this reason, we adopted a method that requires explicit
operation.

As an example of a specific operation, we show the web
editor screen when [Tab] key is pressed after [m] key in Figure
1. In this state, the learner can select the candidates by the
cursor keys (Figure 2 (left)) or narrow down the candidates
by typing continuous characters (Figure 2 (middle)). When the
learner presses the tab key or the enter key while the candidate
is selected, the candidate is confirmed. As a result, the auto-
completion input is completed as shown in Figure 2 (right).
After completing the complementary input, the cursor moves
immediately after the input. If the learner does not press the
[Tab] key, the complementary function will not be activated
and behave like the conventional editor. Also, if the learner
enters the [Tab] key at the beginning of a line or after a space,
all candidates are displayed.

Fig. 1. Example of auto-complete: when [Tab] key is pressed after [m] key

To implement the auto-complete function, we adopted the
show-hint add-on (helper) of CodeMirror editor3. We prepared
function names, keywords, and snippets that are used fre-
quently in Processing programming. The snippets included “if
statements” and “for statements.” Note that in this implemen-
tation, we did not provide dynamic completion that incorporate
variables and functions names defined in the editor. Also, we
did not consider the context of the source code where the

3http://codemirror.net/

Fig. 2. (left) Select by cursor key (middle) narrow down (right)fix by Enter
key

candidate is inserted. Except for these limitations, there is no
noticeable difference between the web editor and the other
installed IDEs. Appendix A shows a list of Processing key-
words and snippets incorporated in this implementation. A web
editor with auto-complete function enabled is available at the
following URL. https://ist.mns.kyutech.ac.jp/miura/pjs/2018/

A. Merits

We discuss the advantages of the auto-complete function
from the viewpoint of similarities and differences with block
interfaces.

• It is possible to provide functions similar to “list of
functions” in the block interface.

• It is possible to show usage examples of both functions
and statements at the same time. It can be a substitute
for reference.

• In a text-based programming environment, it can be
completed only with keyboard input, so it has high
affinity.

• The auto-complete can prevent keyword typing errors.
• The learners can also complement characters that are not

accustomed to input, such as parentheses, curly brackets,
and semicolons. Therefore, the auto-complete function
lowers barriers to typing.

In the block interface, incompatible description and con-
nection can be prevented. With the auto-complete function,
however, it is difficult to feed back conformance without errors
at the text-typing phase.

III. PRACTICE AND ANALYSIS

In order to investigate how the actual learner uses the auto-
complete function, and verify the amount and effect, we have
implemented a Web exercise system, and used it in an actual
lecture. The schedule of the lecture is shown in Table II. All
learners were undergraduate students. The number of learner
was 69. We analyzed only the data of 48 students who agreed
to provide operation logs. Incidentally, from the fifth lecture,
all learners could utilize auto-complete functions freely.

Regarding the operation log, the editor sent to the server
when 100 editing operation events are accumulated or the
learner performs saving operation. The editing operation
events include caret moves by cursor key and mouse clicking
in addition to normal key typing. We also collected the
operation time. Thus the learners’ process of source code
editing can be completely reproduced from the operation log.

TABLE II
SCHEDULE AND OUTLINE OF INTRODUCING AUTO-COMPLETE FUNCTION

Date (week) Setting Contents
April 12 (1) Introduction(drawing)
April 19 (2) Function (mouseXXX)
April 26 (3) Start logging if statement
May 10 (4) for statement
May 17 (5) Start auto-complete Animation
May 24 (6) Array and for
May 31 (7) Mid-term Exam

A. Results and analysis of the operation log

Figure 3 shows how many times the auto-complete function
was used in which task (exercise, assignment, exam) for 32
learners who used the complement function at least once out of
48 learners. “Ex#” shows exercise, “As#” shows assignment,
“Mx#” shows mid-term exam, and there are arranged from
left to right according to the disclosure time of tasks. The
learners are sorted from the top by the order of the number of
times of use. Note that “Ex6” is a problem in explaining the
auto-complete function first in the fifth lecture.

From the figure, we could find there are students who are
using it in practice and exercises, but are not in use at the
time of examination. Since the auto-complete function is not
invoked without pressing the Tab key, it is suggested that some
students had forgot the existence of function in high-pressured
situation. In this experiment, the students were not accustomed
with the auto-complete function because the function was
introduced in the fifth lecture. In appendix A Table V, indicate
the selected snippets and the frequency. We confirmed that
“if” and “for” statements and typical drawing commands were
selected frequently.

Fig. 3. Number of AutoComplete function used per practice / exercise / exam

Next, we verified whether there is a difference in frequency
of key type or not between with and without the auto-complete
functions. We separated operations logs into two categories,

including or not including the auto-complete function. Note
that the operation log was transmitted from 48 learners, and
length of the log was differed by transferring triggers (100
operation events or save operation). After that, we calculated
average and standard deviation of the following key type
counts for each learner: (1) cursor key (2) parentheses and
curly bracket (3) semicolon (4) backspace and delete key (5)
escape key (6) enter key. The values and result of Welch’s
t-test is shown in Table III. As a result, it was confirmed that
the number of parentheses and curly brackets was significantly
smaller, and the number of Enter key was significantly larger
in the operation accompanied by the auto-complete function.
It is thought that the input of parentheses and curly brackets
can be omitted by complementing the if statement and for
statement. Parentheses and curly brackets need to be entered
while holding down the SHIFT key, so the threshold is slightly
higher for learners with low typing skills. Therefore, being
able to alleviate these key inputs is considered to have certain
significance. The reason why the number of times of the Enter
key is increasing is unknown, but there is a possibility that
the operation of confirming the completion candidate or the
operation of adding the line to the block portion (inside of
the curly bracket) may be affected. Incidentally, there was
marginal significance in the number of semicolons. There
was no significant difference in the number of cursor key,
Backspace, and Escape key. Although it is not confirmed and
verified, it seems that novices often move the caret by mouse
operation.

B. Questionnaire Survey

A questionnaire survey was conducted immediately after the
mid-term test. The purpose of the questionnaire survey was to
clarify the student’s awareness of the difficulty level of the
exam questions and the time setting, the student’s awareness
of the support function of the editor, whether or not it is
used, and the student’s score. Questionnaire items summarized
by common options are shown in the following bullets. The
“auto-indent function” was a function for collectively adjusting
indentation by the button at the top center of Figure 1, which
was provided from the first lecture.

• Question 1-1 / 2-1 / 3-1: How long it took you to solve
the mid-term exam of Q1/2/3?
(1) About 5 minutes (2) About 10 minutes (3) About 15
minutes (4) About 20 minutes (5) About 25 minutes (6)
About 30 minutes (7) 30 minutes or more (8) I could not
solve it (I think I could solve it if I had enough time) (9)
I could not solve it (I think I could not solve it even if I
had enough time)

• Question 1-2 / 2-2 / 3-2: How did you feel about the level
of the midterm exam of Q1/2/3?
(1) It was very easy (2) It was easy (3) I can not say
either (4) It was difficult (5) It was very difficult

• Question 4: How many points of your highest score of
yatt (typing training software)?
(1) 1-60 points (2) 61 - 80 points (3) 81 - 100 points (4)

TABLE III
COMPARISON OF KEY OPERATIONS WITH AND WITHOUT AUTO-COMPLETE FUNCTION (BOLD REPRESENTS SIGNIFICANCE, OR 10% MARGINAL

SIGNIFICANCE, ** REPRESENTS 1% SIGNIFICANCE)

Without auto-complete With auto-complete
Type Average (StdDev) n=48 Average (StdDev) n=36 t-value p-value

(1) Cursor Key 5.58 (3.73) 5.51 (4.79) t(60.74)=0.148 0.883
(2) Parentheses/Curly bracket 0.88** (0.37) 0.44 (0.42) t(63.70)=3.035 0.003

(3) Semicolon 0.38 (0.13) 0.18 (0.23) t(54.65)=1.970 0.053
(4) BS/Delete 6.63 (2.72) 7.16 (4.43) t(55.44)=-1.203 0.234

(5) Escape 0.01 (0.04) 0.01 (0.04) t(67.53)=-0.086 0.932
(6) Enter 0.71 (0.26) 1.34** (0.78) t(44.59)=-3.672 0.001

101–120 points (5) 121 - 140 points (6) 141 - 160 points
(7) 161 points or more

• Question 5: Did you use “auto-indent function” while
editing source code? / Question 7: Have you used the
“auto-complete function” while editing the source code?
(1) I did not know the existence of the function (2) I
knew but I did not use it (3) I occasionally used when
noticed (4) I actively used

• Question 6: To what extent do you need “auto-indent
function”? / Question 8: To what extent do you need
“auto-complete function”?
(1) Not at all necessary (2) Not much needed (3) I think
either way is okay (4) Hopefully necessary (5) Very
necessary

Fig. 4. Q7: Frequency of auto-complete function

Fig. 5. Q8: Necessity of auto-complete function

There was 54 valid responses. Figure 4 and Figure 5 show
the frequency (Q7) and the necessity (Q8) of the auto-complete
function, respectively. About half of the learners used the auto-
complete function, and they felt the necessity. However, there
were many students who answered “either way is okay.” We
consider that they recognized lack of programming skills at the
midterm test, and felt the function was designed for advanced
programmers.

The correlation coefficient between the questionnaire result
and the score up to the midterm test and the result of perform-
ing the uncorrelated test are shown in Figure 6. Light blue
** indicates 1% significant, green * indicates 5% significant,
yellow unmarked indicates 10% marginal significance. From
the result of Figure 6, we could confirm the high correlations
between the problem difficulty felt by the learner, the time
necessary to solve, and the score. In addition, we can also
confirm the high correlation between usage frequency and
necessity for auto-complete and auto-indent functions. There is
a negative correlation between the time of Q2 and the necessity
of indentation. This can be interpreted that the learner who
took time to Q2 did not feel the necessity of auto-indent
function. Q2 was a problem that can be solved in a short
time by using a for statement. From the result, it can be said
that learners who were not able to understand and utilize the
“for” statement could not find the usefulness or convenience
of the indentation function.

Although it is the result of the midterm exam of this lecture,
no significant difference was found between the score and
typing skill (r = 0.21, t(52) = 1.56, p = 0.12). This is good
situation from our standpoint that we consider the typing skills
should have a lower impact on results.

In this exam, more than half students felt that the diffi-
culty level was high. Free comments also reveal there were
many learners who felt insufficient understanding and lack of
practice. Also, in this practice, about half of the learners felt
the necessity of the auto-indent function provided from the
beginning of the lecture. Therefore, it is thought that there
were a certain number of learners who have not reached
the understanding of the importance of writing readable and
maintainable code. Blockly Processing [7] may be suitable for
the learners who do not yet recognize or motivated to the text
descriptions.

IV. RELATED WORKS

In order to reduce mistype caused by unfamiliar grammar,
and alleviate the influence of typing skill by keyboard, there
are some researches of introducing block-based interface for
novice programmers and development of learning environment
with input assist function. Matsuzawa et al. developed a
programming environment that can mutually convert between
block description and text description, and performed a prac-
tice in Java language [8]. As a result of the practice, it
was confirmed that the transition gradually from the block

Fig. 6. Correlations between questionnaire survey and score (** and * denote 1% and 5% significance, respectively. Yellow background shows 10% marginal
significance)

description to the text description along with the progress of
programming learning. This research has similarity in carry-
ing out long-term practice and investigation in programming
exercises targeting primary scholars. However, in the text
description method, there is no reference to the auto-complete
function or investigation of its effect.

PEN (The programming environment for novices) [9] pro-
vides input support buttons. This buttons allows learners to
easily input control structures such as conditional statements,
repetitions and functions. It is considered to be an indispens-
able function for accurately and quickly entering the syntax
of extended DNCL4, which contains Japanese text. Since
menu buttons are always displayed on the screen, it is easier
to notice than the auto-complete function. In addition, the
expression of menu can be intuitive for learners. It is superior
to auto-complete function. On the other hand, it is a slight
disadvantage that it is difficult to continue key input because
mouse operation is required when selecting the menu. Also,
the buttons occupies the screen.

Satav et al. compared the functions of integrated develop-
ment environment for C/C++/Java languages[10]. They sepa-
rated into the C/C++ environment and the Java environment,
and lists whether typical function can be used or not for
each IDE. The comparative study is effective for summarizing
provided functions of major IDEs. On the other hands, we
investigated the acceptance and effect of the auto-complete
function for novice learners.

As an improvement of the programming interface not lim-
ited to beginners, there are the following studies. Brandt et al.
propose a method to incorporate Web search interface into IDE
[11]. Oney et al., develop an editor Codelets that can effec-
tively retrieve and insert sample code, and conduct evaluation
experiments for Web development using jQuery Mobile[12].
Ko et al. provide a framework that extends conventional code
editors to introduce flexible expressions[13]. These advanced,

4DNCL is a standard test procedure description language defined by the
University Entrance Examination Center in Japan.

novel programming interface and framework will be fruitful
not only for professionals but also for novice programmers.

V. CONCLUSION

Web IDE is superior in that learners can easily perform
exercises because the environment can be provided only with
the browser. We introduced auto-complete function to increase
the convenience of Web IDE for Processing language.

We conducted a lecture with the enhanced Web IDE in
three weeks. The frequently used completion candidates in the
three weeks were if statements, for statements, and drawing
functions. The frequency of using auto-complete function
will be increased if we could provide the function from the
beginning of lecture.

The snippet of the “if” and “for” statements already con-
tained necessary parentheses and curly brackets. Therefore, the
number of the parentheses and curly brackets was significantly
lower when the learner utilized the auto-complete function.
From the questionnaire immediately after the midterm exam,
about half of the learners used the auto-complete function. In
addition, a strong positive correlation was found between the
use frequency of the function and the necessity that learner
feels.

From the results, we found that the learners who are not
yet conscious or motivated to clearly and carefully write the
source code in text could not fully recognize the necessity of
the auto-complete and auto-indent functions.

Since the target duration of the experiment was about 3
weeks, and explicit operation by [Tab] key was required,
the learners might be not accustomed with the auto-complete
function. Also, motivation to use the function was not strong.
We would like to examine the effect of long-term experiment
more than 3 month.

The concept and function of auto-completion are quite
useful. Therefore, it can be used continuously not only for
the beginners but also at a highly proficient stage. Therefore,
we consider that the use of auto-complete function for novice

learners is important to cultivate a long-term programming
skill.

REFERENCES

[1] Max Goldman, Greg Little, and Robert C Miller. Real-time collaborative
coding in a web IDE. In Proceedings of the 24th annual ACM symposium
on User interface software and technology, pp. 155–164. ACM, 2011.

[2] Vu Nguyen, Hai H Dang, Kha N Do, and Thu D Tran. Learning and
Practicing Object-Oriented Programming Using a Collaborative Web-
based IDE. In Frontiers in Education Conference (FIE), pp. 1–9. IEEE,
2014.

[3] Hiroshi Kimura. Yatt: Yet Another Typing Trainer.
https://literacy.melt.kyutech.ac.jp/yatt.html (Visited: July 5, 2018).

[4] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, et al. Scratch: programming for all.
Communications of the ACM, Vol. 52, No. 11, pp. 60–67, 2009.

[5] Neil Fraser, et al. Blockly: A visual programming editor. URL:
https://developers.google.com/blockly/, 2013.

[6] Neil Fraser. Ten Things We’ve Learned from Blockly. In 2015 IEEE
Blocks and Beyond Workshop (Blocks and Beyond), pp. 49–50, October
2015.

[7] Kochi University of Technology Takata Laboratory. Blockly processing
editor. https://ytakata69.github.io/blockly-processing/ (Visited: June 3,
2018).

[8] Yoshiaki Matsuzawa, Takashi Ohata, Manabu Sugiura, and Sanshiro
Sakai. Language migration in non-cs introductory programming through
mutual language translation environment. In Proceedings of the 46th
ACM Technical Symposium on Computer Science Education, pp. 185–
190. ACM, 2015.

[9] Tomohiro Nishida, Akira Harada, Tomoko Yoshida, Ryota Nakamura,
Michio Nakanishi, Hirotoshi Toyoda, Kota Abe, Hayato Ishibashi, and
Toshio Matsuura. PEN: A Programming Environment for Novices ―
Overview and Practical Lessons―. In EdMedia: World Conference on
Educational Media and Technology, pp. 4755–4760. Association for the
Advancement of Computing in Education (AACE), 2008.

[10] Sampada K. Satav, S. K. Satpathy, and K. J. Satao. A Comparative Study
and Critical Analysis of Various Integrated Development Environments
of C, C++, and Java Languages for Optimum Development. Universal
Journal of Applied Computer Science and Technology, Vol. 1, pp. 9–15,
January 2011.

[11] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer.
Example-Centric Programming: Integrating Web Search into the Devel-
opment Environment. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 513–522. ACM, 2010.

[12] Stephen Oney and Joel Brandt. Codelets: linking interactive documen-
tation and example code in the editor. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 2697–2706.
ACM, 2012.

[13] Andrew J. Ko and Brad A. Myers. Barista: An implementation
framework for enabling new tools, interaction techniques and views in
code editors. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 387–396. ACM, 2006.

APPENDIX

A. Distributions of typing score at the beginning of course

TABLE IV
DISTRIBUTIONS OF TYPING SCORE (NUM OF STUDENTS)

Year 1～ 61～ 81～ 101～ 121～ 141～ 161
(class) 60 80 100 120 140 160 ～
2018 26 19 10 7 4 0 0
2017 23 12 6 1 1 1 1
2016 4 3 5 27 16 5 9
2015 7 9 11 15 11 5 14

2014 (1) 19 16 18 3 3 8 8
2014 (2) 13 16 12 5 0 0 3
2014 (3) 14 15 12 5 1 1 4

B. List of snippets and keywords provided by the auto-complete
function

Note: \n represents line break.
void setup(){\n}
size(w,h); background(200);
fill(,,); ellipse(cx,cy,w,h);
noFill(); strokeWeight(3);
stroke(,,); rect(x,y,w,h);
textSize(50); width
height mouseX
mouseY int
float textAlign(CENTER);
text("",x,y); println();

text("",width/2,height/2);
if () {\n } else {\n }
else
for (int k=0 ; k<10 ; k++) {\n }

while () {\n } mousePressed(){\n}
mouseClicked(){\n} mouseMoved(){\n}
keyPressed(){\n} keyCode
frameRate(20); line(x1,y1,x2,y2);

triangle(x1,y1,x2,y2,x3,y3);
quad(x1,y1,x2,y2,x3,y3,x4,y4);

noStroke(); mousePressed
mouseButton PImage
loadImage("http://"); draw(){\n}

image(img, x, y, img.width, img.height);

class new
random(low,high); floor();
ceil(); round();
LEFT CENTER
RIGHT pushMatrix();
popMatrix(); translate(dx,dy);
rotate(radians(90)); colorMode(HSB,255);

textFont(createFont("Arial",20));

ArrayList list; list = new ArrayList();
list.add(); list.size();
list.get(0); list.remove(0);
return ; mp3("game01/jump12");

C. Frequency of snippet used

TABLE V
FREQUENCY OF SNIPPET USED

count snippet
123 if () {\n } else {\n }
63 rect(x,y,w,h);
62 for (int k=0 ; k<10 ; k++) {\n }
51 background(200);
49 int
47 ellipse(cx,cy,w,h);
42 fill(,,);
26 mouseX
24 mousePressed(){\n }
24 frameRate(20);
24 void
21 else
16 random(low,high);
15 text("",x,y);
15 float
14 mouseClicked(){\n }
12 draw(){\n }

