
Block Sweetie: Learning Web Application
Development by Block Arrangement

Motoki Miura

Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology
1-1 Sensui, Tobata, Kitakyushu, Fukuoka, 804-8550 JAPAN

Email: miuramo@mns.kyutech.ac.jp
Web: https://ist.mns.kyutech.ac.jp/

Abstract—In order to build a Web application, understanding
of the programming language, databases, SQL, and HTTP is
indispensable. We had proposed a PHP-based framework that
can facilitate understanding of these concepts and reduce burdens
of web applications development for novice learners. However,
the novice learner had troubles with syntax errors caused by
mistypes. To relief the anxiety of text editing, we have developed
Block Sweetie that introduces block-programming editor for the
proposed framework. The visual representation and the intuitive
operations on block arrangements prevent troubles of input er-
rors and mistypes. We have designed Block Sweetie with “switch
and observe” approach, which reduces extra burdens such as
saving files and reloading pages. Therefore, novice learners can
efficiently perform trial and errors. We have also prepared sample
block programs that help novice learners to understand related
topics and technologies in a short time. From our preliminary
experimental lecture, we found that Block Sweetie was effective
for understanding differences of HTTP methods.

Keywords—Novice Web Developer, Web Framework, Block Ed-
itor, Web Application Design

I. INTRODUCTION

The World Wide Web is one of the most influential media
platforms for sharing knowledge, exchanging ideas, and work-
ing collaboratively. People can easily publicize their thoughts,
findings and ideas through social networking services. There
are several tools and services for collecting and managing
user-generated data. For example, SurveyMonkey1 provides
functions of online survey. Google docs and forms also enable
the users to create a personalized survey form that is connected
to a spreadsheet. These tools and services are helpful for
collecting information. However, we consider that everyone
should know and have the skill of making customized web
application for effective business and sophisticated, creative
working process design.

However, recent web technologies for developing web
applications have been varied and complicated. Generally, in
order to build a simple Web application, understanding of
the programming language for dynamic page generation is
indispensable. In addition, knowledge of database, SQL, and
HTTP is also required. Therefore, for novice learners, the
threshold of the Web application is higher than that of the
Web page.

1https://www.surveymonkey.com/

We have been developed a system named Sweetie Editor
[1] and Sweetie Framework [2] that makes it easy to construct
a web application on a Web browser. By using the editor and
the framework, it is possible for novice learners to understand
the overview of simple web applications with built-in samples.
Also, thanks to the simple and concise notation of Sweetie
Framework, novice learners can develop their web applications
with short description. However, the novice learners tend to
feel anxiety of text editing from inexperience of text editor
(see Fig. 1 left). Also, syntax errors of the source code disrupt
the efficiency of learning by trial and errors.

In order to further lower the threshold of building a web
application based on the Sweetie Framework for the novice
learners, we have developed a web application development
system using a block editor.

II. BLOCK SWEETIE

Block Sweetie is a block-based visual programming editor
specialized for simple web application based on Sweetie
Framework[2]. It is well known that the block-based pro-
gramming helps beginners learn more traditional text-based
languages[3]. We apply the block-based programming to the
web application development.

Block Sweetie basically provides function of editing PHP
script. Since the PHP script can contain functions of Sweetie
Framework, it is possible to connect SQLite database and
creating/managing tables. Fig. 1 right shows the overview of
Block Sweetie. Novice learners are expected to open two
browser windows for development and learning: one is an
editor window for editing PHP script by block arrangement,
and the other is an application window for confirming behavior
of the web application. When the novice learner rearranges
the block or changes a parameter, Block Sweetie system
immediately exports corresponding PHP script on the right
column of the editor window, and automatically reloads the
application window to apply changes of the script. Therefore,
the novice learner can easily check and confirm the correspon-
dence between the blocks and the script source code.

A. System Design and Merits

In this section, we describe our system design and its merits
to novice learners as well as instructors. The main purpose
of introducing block editor is to ease the novice students to
trial and errors and have experience of various options of

Fig. 1. (left) conventional text-based editor (right) Block Sweetie: block editor window and application window

web applications with minimum burdens. For learning web
application development, novice learners should understand the
relationships among several technologies such as HTML, CSS,
PHP, and database. In order to understand the relationships, we
consider that the novice learner should actively build their own
hypotheses, and check them by their subjective operations.

By introducing block notation and block editor to the web
development, following merits are provided to the learners.

• Eliminating of syntax errors caused by mistypes.

• Reducing anxiety of editing program.

• Reducing of cognitive load of remembering functions
by block list shown on the left column.

• Not necessary to remind orders and meanings of
arguments in function call.

• Learners can focus on the structure of the program as
well as HTML.

Compared to the text-based programming editor, it is possible
to reduce the trouble of text typing. Also, the categorized block
list helps the novice learners to find functions. The block list
gives hint what is possible on the development environment.

We have designed our system so that when the changes
on block editor immediately converts the blocks to the source
code, and reflects and updates the application window. The
“immediate updating” design brings the following merits.

• Promoting trial and error and quick reviews by the
immediate updating/reloading.

• Learners can learn various concepts and knowledge of
web application development with minimum burdens.

By adopting the “immediate updating” design, we intro-
duce “switch and observe” approach for improving learning
effects. For example, we prepared <div> and drop-
down switch for block/inline elements, and and

drop-down switch for unordered/ordered lists. These drop-
down switches are expected to find difference of the options.
We also introduced “in-html” check-box for understanding of
both Sweetie Framework functions and plain HTML/PHP. This
design approach is widely appeared on the block definition of
the Block Sweetie. From Fig. 11 to Fig. 12 in Appendix show
part of our blocks designed for Block Sweetie.

Similar to the design principals of Sweetie Editor, we
have developed the Block Sweetie as a web application. We
have incorporated the Block Sweetie into the Sweetie Editor.
Therefore, it is easy to deploy individual / group working
spaces for each learner/group. For that purpose, we have
developed Block Sweetie by using Google Blockly [4] which
is a versatile block programming editor runs on a web browser.
Google Blockly originally provides functions of exporting PHP
scripts. We have extended the export functions to generate
source code with Sweetie Framework.

III. BLOCK CODE SAMPLES

In this part, we describe block code samples of Block
Sweetie, and intentions of them.

For outline, we have prepared the following block code
samples.

• HTML and PHP basics (Fig. 2)

• HTML Table and List (Fig. 3)

• PHP Associate Array (Fig. 4)

• HTML Form (Get and Post methods) (Fig. 5)

• SQLite introduction (Fig. 6)

• Sample Application (Purchase Note) (Fig. 1 right)

These block code samples appears from a drop-down list of
Block Sweetie editor. The novice learners can freely edit,
modify, and save them for their personalized space.

A. HTML and PHP basics

Fig. 2 shows HTML and PHP basics. In this sample,
we introduce title(), heading(), and br() functions provided
by Sweetie Framework as well as echo, date, and random
functions of PHP. The Sweetie Framework (SwF) functions
provide “in html (html)” check-box. When the check-box is
clicked, the corresponding SwF function is expanded. For
example, the last br(2) block outputs two
 by echo.
The <div> and blocks can optionally specify a
PHP array that is converted to their attributes. In this sample,
the novice learner can change the background color by CSS
notation.

Fig. 2. HTML and PHP basics sample

B. HTML Table and List

Fig. 3 shows a complicated HTML sample with a table
and a list. In this sample, we expect the novice learners to
understand the structure of the table and the list with the
visualized nesting. Note that the drop-down provides
alternative , and <th> provides <td>, respectively.

Fig. 3. HTML Table and List sample

C. PHP Associate Array

Fig. 4 shows how to use and handle associate array of PHP.
The initial pair of array can be defined by [create list with]
block. We provide “foreach” statement to handle array data.
The output of the script is shown in Fig. 9.

Fig. 4. PHP associate array sample

D. HTML Form (Get and Post methods)

Fig. 5 shows a sample of simple HTML Form. The script
accepts both GET and POST methods. The novice learner can
understand the difference of the methods by selecting method
of [form start] block, and how the form data is passed to the
PHP script. The [form input] block allows the novice learner
to select various input types such as text, password, file, check-
box, radio, and range.

Fig. 5. HTML Form (Get and Post methods) sample

E. SQLite introduction

Fig. 6 provides a simple example of creating/inserting DB
table. We have designed the table definition as the [create table]
and [field] blocks. When the novice learner uncheck the “if not
exists” on the [create table] block, the table data is discarded.
The [field] block provides data types of integer, text, datetime,
real, blob, and image as drop-down list. The novice learner
can select the data types by simple operation.

In the former Sweetie Editor, learners had to write SQL
statements directly for preparing SQLite tables. Block Sweetie

Fig. 6. SQLite introductory sample

reduces the errors of editing SQL statements by interlocking
blocks. Also, attributes of the primary key, auto-increment, not
null can be easily set with check-boxes. Therefore, errors in
SQL statements can be reduced, and novice learners can focus
on the meaning and differences of the options.

Incidentally, the novice learner can check the database
table by opening phpLiteAdmin tool[5] from the top link.
This function allows the learner to confirm the result of the
execution, as well as the management of data in detail.

F. Sample Application (Purchase Note)

Fig. 1 right shows a complete sample application of pur-
chase note. The application is composed with the blocks and its
usage appeared in the previous samples. Therefore, we expect
the novice learners to modify and arrange the block sample by
their own skills and knowledge.

Sweetie Framework provides showtable() function
which displays database table data in HTML table format.
Also, modtable() function inserts special Javascript snippet
for modifying table row data. These functions are useful and
convenience, however, the internal mechanism is currently
hidden from the learners. We consider that the definition of
such functions should be represented as blocks for further
improvement.

IV. PRELIMINARY EXPERIMENTAL LECTURE

We conducted a preliminary experimental lecture. Five 3rd-
year undergraduate students attended the lecture. The students
were interested in web application development, and three of
them already have experiences of HTML and Ruby on Rails.

We explained the basics of web application development
with PHP by showing the samples explained in section III and
modifying them. We instructed several features derived from
original Google Blockly such as zooming and enable/disable
blocks. The explanation time was 40 minutes. We also pro-
vided PCs for each student, and the students could operate
Block Sweetie. After the explanation, we asked the following
open-ended questions. The students answered them through a
web form.

1) Describe what you learned about the PHP associate
array.

2) Describe what you learned about HTML form and its
data processing by PHP.

3) Describe what you learned about the database
(SQLite) and how to use it.

4) Describe what you learned about the development of
the web application using PHP. (You can compare
with other methods such as Rails.)

5) List as much as possible of good points and bad
points (improvement points) about this tool.

A. Results and Comments

For the first questions, the students answered as follows.

• I knew it could store keys and values.

• I understood the data structure of PHP. It is similar
to hash in Ruby and dictionary in Python. I felt
high readability compared to index call (note: foreach
statement).

• I felt that PHP is more complicated writing style than
Rails.

• Although it was harder to see than ruby, I felt it was
created immediately by changing the contents of the
block and submitting it.

• It is possible to display data collectively on one line
(note: show table() function).

For the second questions, the students answered as follows.

• Regarding GET and POST, I have not known the
difference. I thought POST was the only method for
sending data. I could know the actual differences and
preferences of GET and POST.

• Differences between GET and POST.

• There is a difference between sending form by GET
or sending by POST.

• There are GET and POST methods for receiving data,
and the size that can be stored in GET is small.

• I did not understand the difference between POST and
GET deeply, so I think the lecture was useful.

For the third questions, the students answered as follows.

• Many descriptions such as null and primary key that
are written in db/migate/* files in Rails were seen.
Also interaction with the database was similar. I did
not have any knowledge about SQL, so I decided to
study about that.

• SQLite manages data as a table.

• A database can be created by executing some codes.

• You can save one file as a database.

• I learned the way of PHP something like Rails.

For the fourth questions, the students answered as follows.

• Both of them are frameworks for generating HTML
and Javascript code, whereas Rails describes actions
by dividing it into three categories, Model, View, and
Controller, the framework (Sweetie) is described in
one file. I was able to understand it intuitively. I could

also compare with HTML, so I felt effective for novice
learners.

• I learned that I could create web applications in
languages other than ruby (PHP).

• PHP notation is directly linked with the processed
output. I think that the point is different by compared
with Ruby.

• It was difficult to distinguish processing than Rails. I
felt that it was similar but differences were variables
and function names.

• I think it will take time for both Rails and PHP to
build from the basic elements of actions, views, and
databases. But I felt that the basic way to do was the
same.

For the fifth questions, we summarized good points and
bad points respectively.

Good points:

• It is possible to describe behavior very intuitively. It
can also be used for HTML learning.

• Easy to understand structure.

• Looks easy.

• Because it is divided into blocks for each sentence, I
felt it was easy to debug.

Bad points:

• Block tends to become large, readability and main-
tainability are likely to deteriorate accordingly (It will
be solved by folding function like vim).

• When you get used to it, text may be easier than block.

• The block program was hard to see.

• The user might be able to write program without
understanding deeply.

B. Discussion

We could confirm that most of the student recognized the
meaning, structure, and functions of HTML, CSS, PHP, and
SQLite, even though the lecture time was less than one hour.
Of course, we should consider that three students already had
experiences of HTML and Ruby on Rails. They could relate
and compare with their knowledge and skills. However, we
found that all students did not know the difference and usage
of GET/POST method, and they could learn them properly by
the lecture.

In future work, we will perform the experimental lecture
for students who have no knowledge and skills about web
development.

V. RELATED WORKS AND SYSTEMS

The impact of block-based interface on introductory pro-
gramming is well known[3]. There are many software tools to
adopt block editor interface for novice programming. For ex-
ample, Scratch[6], Google Blockly[4], and Pencil code[7] are

famous educational tools for novice programmers. Arakliotis
et al. applied the block interface for Arduino programming[8].
We have adopted the block interface for introductory web
application development.

There are several tools and services for creating/developing
web application with simple operations on graphical UIs.
Bubble[9] incorporates interface builder for placing compo-
nents such as buttons, lists, input forms, and map views.
The user develops the web application by relating them.
Web Performer [10] is a tool to automatically generate Web
applications from GUI. Web performer is built as an Eclipse
IDE plugin. The user can develop full-fledged web applications
by saving burdens. These tools reduce the cost and efforts for
developing practical web applications. However, these tools
hide the source codes and details for simplicity and abstraction.
Block Sweetie was designed to show both the blocks and
the corresponding source codes. By comparing the blocks and
the codes, we expect the learners to understand not only the
fundamental concepts of web application but also the detail of
programming and technology.

Nagataki et al. developed a web-based learning tool for
database education called sAccess [11]. sAccess focuses on
introductory computer science education for high school and
college students. sAccess provides block-based query building
interface for manipulating database tables, and allows the
students to learn query building without mastering complex
syntax. sAccess automatically shows the query results for
each step. This feature is superior to Block Sweetie because
the learner should insert blocks explicitly for confirmation of
results. On the other hand, Block Sweetie covers wider topics
for web application development.

VI. CONCLUSION

In order to promote web application development for all
students, we have introduced block interface for our Sweetie
Framework, previously proposed for novice learners with text-
based programming. Block Sweetie lowers the threshold of
building a web application by eliminating anxiety of text
editing and unexpected syntax errors by mistypes. The modi-
fication by the block is immediately reflected to the output.
Therefore, the novice learner can perform trial and errors
without any burdens of saving source codes, exporting files,
and reloading a web page.

Since we have introduced a “switch and observe” approach
for designing blocks, the novice learner can check the dif-
ferences and options with minimum operations. For example,
check boxes and drop-down lists reduce the troublesome as
well as modification time.

Through the preliminary experimental lecture, we could
confirm that Block Sweetie is effective for understanding basic
concepts of HTTP methods and PHP syntax. We also found
that the initial quick tour of the web application development
could be presented within one hour. We will continue to verify
the effect of the Block Sweetie through experimental lectures
for novice students.

Block Sweetie can be downloaded from the following
URL. https://github.com/miuramo/blocksweetie

REFERENCES

[1] Motoki Miura. Lightweight Web Authoring Environment. In 20th Inter-
national Conference on Knowledge-Based and Intelligent Information
& Engineering Systems (KES2016), Vol. 96, pp. 887–895, September
2016.

[2] Motoki Miura. Sweetie Framework: Simple but Practical Web Appli-
cation Development Environment. In 12th International Conference on
Knowledge, Information and Creativity Support System, pp. 149–154,
November 2017.

[3] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn
Turbak. Learnable programming: blocks and beyond. Communications
of the ACM, Vol. 60, No. 6, pp. 72–80, 2017.

[4] Neil Fraser. Ten Things We’ve Learned from Blockly. In 2015 IEEE
Blocks and Beyond Workshop (Blocks and Beyond), pp. 49–50, October
2015.

[5] phpLiteAdmin: The Web-based Database Management Tool for SQLite.
http://www.phpliteadmin.org/. (Visited: July 20, 2018.).

[6] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, et al. Scratch: programming for all.
Communications of the ACM, Vol. 52, No. 11, pp. 60–67, 2009.

[7] David Bau, D Anthony Bau, Mathew Dawson, and C Pickens. Pencil
code: block code for a text world. In Proceedings of the 14th
International Conference on Interaction Design and Children, pp. 445–
448. ACM, 2015.

[8] S Arakliotis, DG Nikolos, and E Kalligeros. Lawris: A rule-based
arduino programming system for young students. In 2016 5th In-
ternational Conference on Modern Circuits and Systems Technologies
(MOCAST), pp. 1–4. IEEE, 2016.

[9] Bubble Group Inc. Bubble: Visual Programming. https://bubble.is/.
(Visited: Dec 24, 2017.).

[10] Canon IT Solutions. Web Performer. https://www.canon-its.co.jp/
products/web performer/. (Visited: Dec 24, 2017.).

[11] Hiroyuki Nagataki, Yoshiaki Nakano, Midori Nobe, Tatsuya Tohyama,
and Susumu Kanemune. A Visual Learning Tool for Database Op-
eration. In Proceedings of 8th Workshop in Primary and Secondary
Computing Education (WiPSCE 2013), pp. 40–41, November 2013.
http://saccess.eplang.jp/.

APPENDIX

Fig. 7. Output of Fig. 2: HTML and PHP basics

Fig. 8. Output of Fig. 3: HTML Table and List

Fig. 9. Output of Fig. 4: PHP Associate Array

Fig. 10. Output of Fig. 5: HTML Form

Fig. 11. DB Operation Blocks

Fig. 12. Table Output Blocks

